) a, p and d are n×n matrices. check the true statements below:
a. if a is diagonalizable, then a has n distinct eigenvalues.
b. if ap=pd, with d diagonal, then the nonzero columns of p must be eigenvectors of
a.
c. if a is invertible, then a is diagonalizable.
d. a is diagonalizable if a has n distinct eigenvectors.

Question

Grade: Education Subject: mathematics
) a, p and d are n×n matrices. check the true statements below:
a. if a is diagonalizable, then a has n distinct eigenvalues.
b. if ap=pd, with d diagonal, then the nonzero columns of p must be eigenvectors of
a.
c. if a is invertible, then a is diagonalizable.
d. a is diagonalizable if a has n distinct eigenvectors.
Asked by:
348 Viewed 348 Answers

Answer (348)

Best Answer
(1459)
a. False. Consider the identity matrix, which is diagonalizable (it's already diagonal) but all its eigenvalues are the same (1).

b. True. Suppose [tex]\mathbf P[/tex] is the matrix of the eigenvectors of [tex]\mathbf A[/tex], and [tex]\mathbf D[/tex] is the diagonal matrix of the eigenvalues of [tex]\mathbf A[/tex]:


[tex]\mathbf P=\begin{bmatrix}\mathbf v_1&\cdots&\mathbf v_n\end{bmatrix}[/tex]

[tex]\mathbf D=\begin{bmatrix}\lambda_1&&\\&\ddots&\\&&\lambda_n\end{bmatrix}[/tex]

Then

[tex]\mathbf{AP}=\begin{bmatrix}\mathbf{Av}_1&\cdots&\mathbf{Av}_n\end{bmatrix}=\begin{bmatrix}\lambda_1\mathbf v_1&\cdots&\lambda_n\mathbf v_n\end{bmatrix}=\mathbf{PD}[/tex]

In other words, the columns of [tex]\mathbf{AP}[/tex] are [tex]\mathbf{Av}_i[/tex], which are identically [tex]\lambda_i\mathbf v_i[/tex], and these are the columns of [tex]\mathbf{PD}[/tex].

c. False. A counterexample is the matrix

[tex]\begin{bmatrix}1&1\\0&1\end{bmatrix}[/tex]

which is nonsingular, but it has only one eigenvalue.

d. False. Consider the matrix

[tex]\begin{bmatrix}0&1\\0&0\end{bmatrix}[/tex]

with eigenvalue [tex]\lambda=0[/tex] and eigenvector [tex]\begin{bmatrix}k&0\end{bmatrix}^\top[/tex], where [tex]k\in\mathbb R[/tex]. But the matrix can't be diagonalized.